Learning Causal Networks via Additive Faithfulness

Kuang-Yao Lee
Yale School of Public Health

(Joint work with Tianqi Liu, Bing Li, and Hongyu Zhao)

December 12, 2015

Outline

- Motivating data set
- Additively faithful directed acyclic graph
- Estimation, consistency, and examples

Flow cytometry

- Monitor single cell
- Measure multiple protein levels simultaneously

Sachs et al. (2015); http://www.semrock.com/flow-cytometry.aspx

Human primary naive $\mathrm{CD} 4^{+} \mathrm{T}$ cells

- 11 protein levels measured on 7466 cells
- How to recover the signaling pathways?
- A conventionally accepted network:

Sachs et al. (2015)

Directed acyclic graph (DAG)

- $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\} ; \mathrm{V}=\{1, \ldots, p\}$ nodes;
$\mathrm{E} \subseteq\{(i, j) \in \mathrm{V} \times \mathrm{V}, i \neq j\}$ directed edges; no cycles
- $X=\left(X_{1}, \ldots, X_{p}\right)^{\top}$ is Markovian w.r.t. G if, for any $(i, j) \in \mathrm{E}$ and any subset $\mathrm{S} \subseteq V \backslash\{i, j\}$,

$$
i \text { and } j \text { are } d \text {-separated by } S \Rightarrow X_{i} \Perp X_{j} \mid X_{S}
$$

Markov property

$\mathrm{B} \longrightarrow \mathrm{D}$

$$
\begin{gathered}
A \perp_{d} B \\
C \perp_{d} D \mid A, B
\end{gathered} \Longrightarrow \begin{gathered}
X_{A} \Perp X_{B} \\
X_{c} \Perp X_{D} \mid X_{A}, X_{B}
\end{gathered}
$$

Spirtes et al. (2000)

Identifiability

- For observational data: not possible
- Equivalent classes, e.g.

- Same d-separation
- Global search:
- 11 nodes: $31,603,459,396,418,917,607,425$ DAGs
$-p$ nodes: $\approx p!\cdot 2\left({ }^{(b)}\right.$
Can we infer DAG from local structures?

Chickering (2003); van der Geer and Buhlmann (2013); Peters and Bühlmann (2014); http://oeis.org/A003024/list

Faithfulness

Conditional indepedence also implies d-separation

$$
\begin{gathered}
A \perp_{d} B \\
C \perp_{d} D \mid A, B
\end{gathered} \Longleftrightarrow \begin{gathered}
X_{A} \Perp X_{B} \\
X_{c} \Perp X_{D} \mid X_{A}, X_{B}
\end{gathered}
$$

Characterizing conditional independence

A

- Under Gaussianity:

$$
X_{A} \Perp X_{B} \mid X_{C} \Leftrightarrow \operatorname{cor}\left(X_{A}, X_{B} \mid X_{C}\right)=0
$$

- partial correlation test (PC-algorithm)
- Fully non-parametric? curse of dimensionality!

New criteria like \Perp but without multivariate kernels?
Kalisch and Bühlmann (2007); Hoyer et al. (2009); Mooij et al. (2009); Peters et al. (2014)

Outline

- Motivating data set
- Additively faithful directed acyclic graph
- Estimation, consistency, and examples

Additive reproducing kernel Hilbert space

- $\kappa(\cdot, \cdot)$: a positive definite kernel
- \mathscr{A}_{j}, reproducing kernel Hilbert space (RKHS) of X_{j} : space spanned by $\left\{\kappa\left(\cdot, x_{j}^{1}\right), \ldots, \kappa\left(\cdot, x_{j}^{n}\right)\right\}$

Definition $\left(\oplus \mathscr{A}_{j}\right.$, direct sum)

$$
\oplus \mathscr{A}_{j} \triangleq \sum_{j=1}^{p} \mathscr{A}_{j}=\left\{\sum_{j=1}^{p} f_{j}: f_{j} \in \mathscr{A}_{j}\right\}
$$

with inner product

$$
\left\langle\sum_{j=1}^{p} f_{j}, \sum_{j=1}^{p} g_{j}\right\rangle \triangleq \sum_{j=1}^{p}\left\langle f_{j}, g_{j}\right\rangle
$$

Additive conditional independence (ACI)

Definition ($U \quad V \mid W$)

(U, V, W), subvectors of X;
U and V are additively independent given W if

$$
\left(\mathscr{A}_{u}+\mathscr{A}_{w}\right) \cap \mathscr{A}_{w}^{\perp} \perp\left(\mathscr{A}_{v}+\mathscr{A}_{w}\right) \cap \mathscr{A}_{w}^{\perp},
$$

where \perp is in terms of L_{2}-inner product.

ACl

non-ACI

Semi-graphoid

Theorem (Li, Chun, and Zhao, 2014)

" $\Perp \mathscr{A}$ " is a semi-graphoid.

Semi-graphoid axioms

B

1. symmetry: $\mathbf{C}-\mathbf{B} \Longrightarrow \mathbf{C}-\mathbf{A}$
|
2. decomposition: $\mathbf{C}-\mathbf{B}, \mathbf{D} \Longrightarrow \mathbf{C}-\mathbf{B}$
3. weak union: $\mathbf{C}-\mathbf{B}, \mathbf{D} \Longrightarrow \mathbf{B}, \mathbf{C}-\mathbf{D}$

Pearl and Verma (1987); Pearl, Geiger, and Verma (1989)

Additive faithfulness DAG (AFDAG) Definition

$X=\left(X_{1}, \ldots, X_{p}\right)^{\top}$ is additively faithful w.r.t. G if, for any $(i, j) \in \mathrm{E}$ and any subset $\mathrm{S} \subseteq V \backslash\{i, j\}$,
i and j are d-separated by $S \quad \Leftrightarrow \quad X_{i} \Perp \mathscr{A} X_{j} \mid X_{s}$.

Proposition

Suppose

a. X follows a multivariate Gaussian copula distribution with transforming functions (f^{1}, \ldots, f^{p});
b. $\mathscr{A}_{i}=\operatorname{Span}\left\{f^{i}\right\}$.

Then faithfulness \Leftrightarrow additive faithfulness.
Li, Chun, and Zhao (2014)

Outline

- Motivating data set
- Additively faithful directed acyclic graph
- Estimation, consistency, and examples

Additive covariance operator

Definition $\left(\Sigma_{x x}\right)$

$\Sigma_{x x}: \oplus \mathscr{A}_{j} \rightarrow \oplus \mathscr{A}_{j}$, for each $f=f_{1}+\cdots+f_{p}$, satisfies

$$
\Sigma_{x x} f=\left(\begin{array}{ccc}
\Sigma_{x_{1} x_{1}} & \cdots & \Sigma_{x_{1} x_{p}} \\
\vdots & \ddots & \vdots \\
\Sigma_{x_{p} x_{1}} & \cdots & \Sigma_{x_{p} x_{p}}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{p}
\end{array}\right)
$$

with pairwise covariance operator $\Sigma_{x_{i} x_{j}}$ induced by

$$
\left\langle g, \Sigma_{x_{i} x_{j}} f\right\rangle=\operatorname{cov}\left[f\left(X_{j}\right), g\left(X_{i}\right)\right]
$$

for any $f \in \mathscr{A}_{j}$, and $g \in \mathscr{A}_{i}$.

Characterization of ACl

Definition

Additive conditional covariance operator (ACCO):

$$
\Sigma_{x_{i} x_{j} \mid x_{S}} \triangleq \Sigma_{x_{i} x_{j}}-\Sigma_{x_{i} x_{s}} \Sigma_{x_{s} x_{s}}^{\dagger} \Sigma_{x_{S} x_{j}},
$$

\dagger : Moore-Penrose inverse
Theorem

$$
X_{i} \Perp \mathscr{A} X_{j} \mid X_{\mathrm{s}} \Leftrightarrow \Sigma_{x_{i} x_{j} \mid x_{s}}=\mathbf{0}
$$

- For non-additive kernels: see Fukumizu et al. (2009)

Re-building the network

i and j disconnected
I
i and $j d$-separated by some $\mathrm{S} \subseteq \mathrm{V} \backslash\{i, j\}$
I
$X^{i} \Perp \mathscr{A}^{X^{j} \mid X^{s} \text { for some } \mathrm{S} \subseteq \mathrm{V} \backslash\{i, j\}}$
I
$\Sigma_{x_{i} x_{j} \mid x_{S}}=\mathbf{0}$ for some $\mathrm{S} \subseteq \mathrm{V} \backslash\{i, j\}$

Consistency

Theorem

$\mathrm{E}_{\text {CPDAG }}$ and $\widehat{\mathrm{E}}_{\text {CPDAG }}$: true and estimated completed partially directed acyclic graphs (CPDAG). Suppose $n^{-1 / 2} \prec \epsilon_{n} \prec 1$. Under some regularity conditions,

1. $\left\|\hat{\Sigma}_{x_{i} x_{j} x_{s}}\left(\epsilon_{n}\right)-\Sigma_{x_{i} x_{j} \mid x_{s}}\right\|=O_{P}\left(\epsilon_{n}^{1 / 2}+n^{-1 / 2} \epsilon_{n}^{-1}\right)$,
2. $P\left(\widehat{\mathrm{E}}_{\mathrm{CPDAG}}=\mathrm{E}_{\mathrm{CPDAG}}\right) \rightarrow 1$

- Use ridge inverse (with parameter ϵ_{n}) to replace Moore-Penrose inverse

Simulations

* SHD: structure Hamming distance
- Given edge E , sequentially generate $\left\{X_{i}, i=1, \ldots, p\right\}$ by

$$
X_{1}=\varepsilon_{1}, \quad X_{i}=f_{i}\left(\left\{X_{j}:(i, j) \in \mathrm{E}\right\}, \varepsilon_{i}\right), \quad i=2, \ldots, p, \quad \varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)
$$

- Linear : $X_{i}=\sum_{(i, j) \in E} \alpha_{i, j} X_{j}+\varepsilon_{i}, \quad$ Quadratic : $X_{i}=\sum_{(i, j) \in E} \alpha_{i, j}\left(X_{j}\right)^{2}+\varepsilon_{i}$.
- $\alpha_{i, j} \sim \operatorname{Uniform}(0,1)$

Pearl (2000); Tsamardinos, Brown, and Aliferis (2006)

Simulations (50 nodes)

Pathway analysis

- Randomly draw 2,000 cells as sub-sample
- Repeat analysis 20 times

	AFDAG	PC (5E-02)	PC (5E-04)	PC (5E-08)	PC (5E-16)
mean (std)	$\mathbf{1 6 . 9 5 (0 . 6 0)}$	$22.45(2.21)$	$20.20(2.61)$	$18.90(2.25)$	$18.25(1.29)$

Summary

- New principle: additive conditional independence
- AFDAG: a new model for causality learning
- Theoretical and numerical justifications

Other applications of ACI ?

THANK YOU!

