
Learning Causal Networks via
Additive Faithfulness

Kuang-Yao Lee

Yale School of Public Health

(Joint work with Tianqi Liu, Bing Li, and Hongyu Zhao)

December 12, 2015



Outline

• Motivating data set

• Additively faithful directed acyclic graph

• Estimation, consistency, and examples



Flow cytometry
• Monitor single cell

• Measure multiple protein levels simultaneously

Sachs et al. (2015); http://www.semrock.com/flow-cytometry.aspx

http://www.semrock.com/flow-cytometry.aspx


Human primary naive CD4+ T cells
• 11 protein levels measured on 7466 cells

• How to recover the signaling pathways?

• A conventionally accepted network:

Sachs et al. (2015)



Directed acyclic graph (DAG)

• G = {V,E}; V = {1, . . . , p} nodes;
E ⊆ {(i , j) ∈ V× V, i 6= j} directed edges; no cycles

• X = (X1, . . . ,Xp)
T

is Markovian w.r.t. G if,

for any (i , j) ∈ E and any subset S ⊆ V \ {i , j},

i and j are d -separated by S ⇒ Xi Xj|XS

Lauritzen (1996)



Markov property

A

B

C

D

A ⊥d B XA XB

=⇒
C ⊥d D|A,B XC XD|XA,XB

Spirtes et al. (2000)



Identifiability
• For observational data: not possible

- Equivalent classes, e.g.
A

C B ,

A

C B ,

A

C B

- Same d-separation

• Global search:
- 11 nodes: 31,603,459,396,418,917,607,425 DAGs
- p nodes: ≈ p! · 2(

p
2
)

Can we infer DAG from local structures?

Chickering (2003); van der Geer and Buhlmann (2013); Peters and
Bühlmann (2014); http://oeis.org/A003024/list

http://oeis.org/A003024/list


Faithfulness

Conditional indepedence also implies d-separation

A

B

C

D

A ⊥d B XA XB

⇐⇒
C ⊥d D|A,B XC XD|XA,XB

Spirtes et al. (2000)



Characterizing conditional independence

A

C B
• Under Gaussianity:

XA XB|XC ⇔ cor(XA,XB|XC) = 0

- partial correlation test (PC-algorithm)
• Fully non-parametric? curse of dimensionality!

New criteria like but without multivariate kernels?

Kalisch and Bühlmann (2007); Hoyer et al. (2009); Mooij et al. (2009);
Peters et al. (2014)
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Additive reproducing kernel Hilbert space

• κ(·, ·) : a positive definite kernel

• A j, reproducing kernel Hilbert space (RKHS) of Xj:
space spanned by {κ(·, x 1

j
), . . . , κ(·, x n

j
)}

Definition (⊕A j , direct sum)

⊕A j ,
p∑

j=1

A j =


p∑

j=1

fj : fj ∈ A j

,
with inner product

〈
p∑

j=1

fj ,

p∑
j=1

gj〉 ,
p∑

j=1

〈fj , gj〉



Additive conditional independence (ACI)

Definition (U AV |W )

(U ,V ,W ), subvectors of X ;
U and V are additively independent given W if

(A U + A W) ∩A ⊥
W
⊥ (A V + A W) ∩A ⊥

W
,

where ⊥ is in terms of L2-inner product.



ACI



non-ACI



Semi-graphoid

Theorem (Li, Chun, and Zhao, 2014)
“ A” is a semi-graphoid.



Semi-graphoid axioms

1. symmetry:

A

C B =⇒

B

C A

2. decomposition:

A

C B,D =⇒

A

C B

3. weak union:

A

C B,D =⇒

A

B,C D

4. contraction:

A

B,C D +

A

C B =⇒

A

C B,D

Pearl and Verma (1987); Pearl, Geiger, and Verma (1989)



Additive faithfulness DAG (AFDAG)
Definition
X = (X1, . . . ,Xp)

T

is additively faithful w.r.t. G if,
for any (i , j) ∈ E and any subset S ⊆ V \ {i , j},

i and j are d-separated by S ⇔ Xi AXj|XS.

Proposition
Suppose

a. X follows a multivariate Gaussian copula distribution
with transforming functions (f 1, . . . , f p);

b. A i = Span{f i}.
Then faithfulness ⇔ additive faithfulness.

Li, Chun, and Zhao (2014)
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Additive covariance operator

Definition (ΣXX)

ΣXX : ⊕A j → ⊕A j, for each f = f1 + · · ·+ fp, satisfies

ΣXX f =

ΣX1X1
· · · ΣX1Xp

... . . . ...
ΣXpX1

· · · ΣXpXp

f1
...
fp

 ;

with pairwise covariance operator ΣXiXj
induced by

〈g ,ΣXiXj
f 〉 = cov[f (Xj), g(Xi)],

for any f ∈ A j, and g ∈ A i .



Characterization of ACI

Definition
Additive conditional covariance operator (ACCO):

ΣXiXj |XS , ΣXiXj
− ΣXiXS

Σ†
XSXS

ΣXSXj
,

†: Moore-Penrose inverse

Theorem

Xi AXj|XS ⇔ ΣXiXj |XS = 0

• For non-additive kernels: see Fukumizu et al. (2009)



Re-building the network

i and j disconnected

m
i and j d-separated by some S ⊆ V\{i , j}

m
X i

AX j|X S for some S ⊆ V\{i , j}
m

ΣXiXj |XS = 0 for some S ⊆ V\{i , j}



Consistency

Theorem

ECPDAG and ÊCPDAG: true and estimated completed
partially directed acyclic graphs (CPDAG). Suppose
n−1/2 ≺ εn ≺ 1. Under some regularity conditions,

1. ‖Σ̂XiXj |XS(εn)− ΣXiXj |XS‖ = OP(ε1/2
n

+ n−1/2ε−1
n

),

2. P(ÊCPDAG = ECPDAG)→ 1

• Use ridge inverse (with parameter εn) to replace
Moore-Penrose inverse



Simulations

? SHD: structure Hamming distance

• Given edge E, sequentially generate {Xi , i = 1, . . . , p} by
X1 = ε1, Xi = fi({Xj : (i , j) ∈ E}, εi), i = 2, . . . , p, εi

i.i.d.∼ N (0, 1)
• Linear : Xi =

∑
(i,j)∈E

αi,jXj + εi , Quadratic : Xi =
∑

(i,j)∈E
αi,j(Xj)

2 + εi .

• αi,j ∼ Uniform(0, 1)

Pearl (2000); Tsamardinos, Brown, and Aliferis (2006)



Simulations (50 nodes)
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Pathway analysis

• Randomly draw 2,000 cells as sub-sample

• Repeat analysis 20 times

AFDAG PC (5E-02) PC (5E-04) PC (5E-08) PC (5E-16)
mean (std) 16.95(0.60) 22.45 (2.21) 20.20 (2.61) 18.90 (2.25) 18.25(1.29)



Summary

• New principle: additive conditional independence

• AFDAG: a new model for causality learning

• Theoretical and numerical justifications

Other applications of ACI?



THANK YOU!


